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Supplementary Note S1: Mathematical properties of the crossfeeding model and its
optimization

The cross-feeding model we developed in the main text is a kinetic model in which the fluxes are
explicitly modelled as a function of metabolite's and enzyme's concentrations. The optimization
problem discussed in our work is the minimization of the total enzyme levels for the whole
population considered, with constraints on the minimum production fluxes of the final product of
the biosynthetic pathways. In this note we describe some useful mathematical properties of the

model:

(Section S1.1) Consider a solution to the optimization problem, obtained using some demand

fluxes J,; and permeability constants D, . Then, consider another problem in which the

parameters J',; and D', are obtained by multiplying the previous ones by the same constant
a>0 , so that J', ,=aJ,; and D' =aD, . Then, the solution to this new optimization
problem is obtained from the old solution by multiplying the enzyme levels by the same constant,
[E],=alE]

In particular, the two solutions have the same protein asymmetries

1

A,=(El,1—[E)2)/({E]¢ #[E].,) , since these are not affected by a rescaling of the protein

levels. As a consequence, it is possible to set some of these parameters to some reference values

(e.g. Jp +Jp,=2 ) without any loss of generality.

(Section S1.2) We show that any optimal solution to the enzyme minimization problem
corresponds to the solution to an optimization problem in which the production fluxes are
maximized, subject to a cap on the maximum enzyme levels. This means that our model captures

two distinct selective pressures (flux maximization and enzyme economy) at the same time.
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S1.1 - Family of solutions with constant metabolite concentrations

It is useful to introduce a compact notation for describing all the relevant variables and

parameters in the model.
. [m],, indicates the concentration of any intracellular metabolite;
. [m],, indicates the concentration of any extracellular metabolite;
. [E] indicates the concentration of any enzyme;

e x=([mly,[m].,[ E]) is a vector containing all variables in the model;

V' indicates any intracellular flux;

U indicates any transport flux;

J indicates any demand flux;

D indicates any permeability constant.

Since we won't consider in the following analysis any other kinetic parameter or the relative
populations of the two bacterial species, so that there is no need to consider them explicitly. The

kinetic equations in Eq. (1-3) can be then written generically as
V:[E]f([m]m> s U:D([m]m_[m]out) (Eq’ Sl)

where f([m],) is a function describing the All mass-balance constraints (Eq. 4 from the main
text) are linear constraints, either equalities or inequalities, of the fluxes. In fact, the only non-linear

terms in the constraints are those involving the internal metabolites. Let us now suppose that

* *

x =([m];,,[m],u,[E]) solves the mass-balance constraints with demand fluxes J and
membrane permeabilities D . It is easy to check that, for any positive constant a , the vector
x (a) obtained by multiplying the enzyme concentrations by this constant, so that
x (a)=([m],,[m],,alE]) , solves the mass-balance equations (Main Text, Eq. 4), as long as

the parameters J and D are multiplied by the same constant.

This relation relates a family of different models obtained by jointly varying the demand fluxes
and the permeabilities constant. In the approach assumed in the main text, the cost function is a
linear function of the enzyme concentrations, Coc[E] ; therefore, as the parameter a is varied,
optimal solutions are mapped into optimal solutions, because the cost function is only multiplied by

a constant and therefore its minima are not affected by the rescaling. This property allows us fix an
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absolute scale forthe J and D parameters, without losing any generality; indeed, we fixed the
sum of the intracellular demand fluxes J, ,+J,,=2 . As an application of this relation, consider
Fig. 2 in the main text, which is obtained for J,,=J,,=1 and J,,=0 . If we had set the
demand fluxesto J, =J,,=a with a>0 , one would have obtained exactly the same protein

asymmetry landscape, with the only difference that the axes would have been rescaled by a factor

1/a

S1.2 - Flux maximization and enzyme level minimization are dual
problems

In our work we focused on enzyme concentration minimization, subject to flux constraints
(“demand fluxes”). In this section we will show that this approach yields the same results as the
maximization of the biosynthetic fluxes with a cap on the total concentration of enzymes. The

demand fluxes constrain the biosynthetic fluxes and the P metabolite excretion as:
VP,lsz,l 4 VP,ZZJP,Z > nlUP,1+n2 UP,ZZJP,O (Eq' SZ)

By introducing the total excretion rate  V, ;=n, U, +n,U,, we can write these constraints in

a compact form as:

VeizJp; » 1=1,23 (Eq. S2)
The optimization problem can be recasted as:

min, C(x) s.t. Vp,(x)>Jp,;, =123 (Eq. S3)

where x , as before, stands for the set of metabolite and enzyme concentrations. The additional
constraints on the variables due to the mass balance equations do not play any role in the following,
and thus we are not writing them explicitly in Eq. (S3). Let us call x" the solution of this
optimization problem; similarily, C =C(x) and V, =V, (x") . In our simulations, the
constraints in Eq. (S3) are satisfied by the optimal solution with equalities, V;,,: Jp; -Thisis a

reasonable results, since one expects that minimum enzyme concentration needed to sustain the

demand fluxes should increase along with the fluxes. This request is expressed in mathematical
terms by the strict inequality dC’/dJ p;>0 (the shadow price of the constraint has to be positive)
If this inequality is satisfied, the constraints said to be active, and V;’i: Jp; - Let us now

consider the following “auxiliary” problem:

min, ,C(x) s.t. y>y , Vo (x)=yJp; , i=123 (Eq. S4)
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Here, we introduced an auxiliary variable y which is constrained to be larger than some constant

y~ . Itis easy to check that if y =1 , then a solution of Eq. (S3) satisfies the constraints of Eq.
(S4) and vice-versa; but it is also easy to see that an optimal solution of one of the two problems
provides an optimal solution to the other one. This follows from the fact that the solution space (the
set of all possible vectors x satisfying the constraints) of the auxiliary problem is a subset of the
original one, and contains its optimal solution (see Fig. N1A). If the solution of the two problems
were different, we would obtain a contradiction. Therefore, the “protein minimization” problem and
the “auxiliary” problem are completely equivalent. But then, let us consider the following “flux

maximization” problem:
max, ,y st C(x)<C", V,,(x)=yJp,;, i=12,3 (Eq. S5)

Again, it is easy to see that this problem is equivalent to the auxiliary one by comparing the
solution space of the two. Therefore, we have shown that the three problems are equivalent: in our
model, minimizing the protein concentration with constraints on the demand fluxes is equivalent to

maximizing the fluxes of the product metabolites, subject to a cap on the enzyme concentration.

(A) (B)
A Optimal solution 8. A Feasible region
VP,2 /yz”
N
Optimal
solution
Feasible region \
* 0
JP,2 ,(J C bl
L\’."'. / feasi .
N Infeasible region R e
> >
*
Jp1 Vea y =1 y

Figure N1. (A) Equivalence of the solutions of the ‘“protein minimization” problem (minimize
C s.t.V,,=J, ) and the “auxiliary” problem (minimize C s.t. y>y =1 and Vo i=YJp i) In the
protein minimization problem the production fluxes V, ;are constrained to be larger than the demand
fluxes Jp ;(red lines); the condition dC 1dJ p.;>0 implies that the optimal solution is found when
Vo i=Jp ;. In the auxiliary problem one still optimizes for the protein levels, but restricting the solution to
the line V, ;=yJ,; (in blue) with y=1. (B) Equivalence of the “auxiliary problem” (minimize
C st.y= y* ) and the “flux maximization” problem (maximize y s.t. C <C’ ). The coloured arrow
show the directions of the optimization problems; the same colors indicate the relevant constraints ( yZy’k
and. C<C’ ). In this case the condition dC"/dJ p.i>0 guarantees that the slope of the border between the
“feasible” and the “infeasible” regions is positive.
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Supplementary Note S2: Sensitivity analysis procedure

In this note we resume the approach we adopt for sensitivity analyses performed to identify
which parameters impact the most on the structure of the optimal solutions. First, we define (k] as
the set of parameters to be perturbed (e.g. the kinetic constants), and {Xi} as the variables in the
optimization problem (i.e. protein and metabolite concentrations). For each parameter k;, a
uniform probability distribution p;(k;) , centred around a reference value k , is defined. In order to
identify which parameters are mostly involved in the transition from the symmetric to the
asymmetric solution, we focused on a point close to the frontier separating the two regions with
As=0 (symmetric solution) and ‘AS‘:Lnamely 1/K,=10, Dy=4 and D,=5 (see Main Text
Fig. 2). Then, a set of N=200 different combinations of parameters {k.},, a=1,...,N was

generated, and for each set of parameters {k,}, we computed the optimal concentrations {x; |

a

The optimization presents some additional challenges with respect to the other cases discussed
in the manuscript, as one has to check the convergence of the minimization problems without
relying on smoothness properties of the optimal solution. Furthermore, we chose a point on the
frontier between the symmetric and the asymmetric region, where the cost function presents two
almost-degenerate minima (i.e. two points in the concentration space where the cost function attains
roughly the same value). In this condition, local optimization methods hardly converge to the
correct minimum. For the sensitivity analysis, the following optimization method was used, each
optimal solution was obtained from several minimization rounds, each one using a different

(random) starting point or seed. The iterative procedure we followed is the following:
1. Setacounter g=0.

2. Increment the counter g by 1. For each set of parameters {ki}a, a=1,...,N we compute

q
a

an optimal solution {x;}? starting the minimization algorithm from a random seed.

3. If q=1, set {x;],=(x,]%. If instead g>1, compare the solutions |x,|? with the ones
obtained at the previous step, [x;]? " . If the cost function evaluated with the latest solution

is smaller than the cost function evaluated at the previous step, set [ x; |, ={ x;]? .

a

4. If, during the evaluation at step 3, none of the N sets of solutions {x;], has changed, exit.

Otherwise, go to step (2).

The fraction of solutions getting updated at each iterations decreases constantly, so that this
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algorithm guarantees that the vast majority of the solutions |x;], converge on the true optimal
configuration. We end up with a dataset of parameters {k;|, and associated optimal solutions

[x;],, a=1,...,N . Since the optimal concentrations depend on the chosen set of parameters, any

1
function f (x*) of the optimal concentrations (e.g. the protein asymmetry Ag , or the cost function
itself) is a random variable itself. In particular, we are interested in checking which parameters most

affect the protein asymmetry, which is clearly signalled by the value of Ay ).
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Supplementary figures and tables caption

Supplementary Figures

Supplementary Figure S1. Protein asymmetry A, in the case of competitive inhibition of P on the Eg
enzyme. The plots show the protein asymmetry A, , for four different values of the inhibition constant
(increasing inhibition, from left to right: 1/ K,=3,10,30, 100 ) for the case of competitive inhibition. In this

case we set S, . =10. In absence of any kind of inhibition ( 1/ K; = 0 ) the optimal solution is always

max
symmetric, i.e., A,=0 for all proteins. An asymmetric solution emerges when inhibition is relevant and
D,ID, is large enough. The darker color in the 1/K,=100 case highlights the region in which
[E 5’2]=[E X)1]=0, and the pathway is completely split between the two cell types. The case of non-

competitive inhibition is shown in Fig. 2.

Supplementary Figure S2. Optimal solutions as a function of the external P demand flux J, ,, for a
fixed value of the internal demand fluxes. Top panels (A-D) show the optimal solution (in red), together
with particular solutions obtained by forcing to zero the levels of particular enzymes ( Es , and Ey | ). The
bottom panels (E-H) show the absolute protein levels in the optimal solution. We used the following settings:
for all the cases the demand of the cells are Jp ,=J,,=1; then (A,E) K;=0, Dy=2, D,=2; (BF)
K,=1/25, D,=2, D,=2; (¢,G) K,=1/25, D,=10, D,=10; (p,H) K,=1/25, D,=20,
D,=4 . In each of the bottom plots, the protein levels are normalized to the maximum level attained by any
of the six proteins at any value of Jp ,, that is, €a,i(JP,o) = Ea,l-(Jp,o) / [maX(Jm,a,i)Ea,i(Jp,o)] . For

the case of asymmetric solution, only those with protein asymmetry Ag=0 are shown.

Supplementary Figure S3. Optimal solutions as a function of demand flux asymmetry
Py Z(JP’I—JP,2)/(JP’1+JP,2) , for a fixed value of the total flux, J, ,+J,,=2. Top panels (A-D) show
the optimal solution (in red), together with particular solutions obtained by forcing to zero the levels of
specific enzymes ( Es, , Eg, and Ey, ). The bottom panels (E-H) show the absolute enzymes
concentration in the optimal solution. We used the following settings (same as Fig. S2, using J, ;=0 ): (A,
E) K,=0 , D,=2, D,=2; (B F) K,=1/25, D,=2, D,=2; (C, G) K,=1/25, D,=10,
D,=10; (D, H) K,=1/25, D,=20, D,=4 . In each of the bottom plots, the enzyme concentrations
are normalized as in Figure S2. Note that when p; is different from zero, the symmetry between the two
optimal solutions with Ag>0 and A,<O0 is broken, so that we have to consider them separately. In
particular, the solution with Ag<0 ([Eg,]=0 ) is optimal when p; >O0.

Supplementary Figure S4. Optimal solutions as a function of the relative population size n, . As in Figure
S3, the two solutions with Ag=—1 ( [ES’Z]:O )and Ag=1 ([Eg,]=0 ) are no longer equivalent when
n, is different than 0.5. Top panels (A-D) show the optimal solution (in red), together with particular
solutions obtained by forcing to zero the levels of specific enzymes ( Eg, , Eg, and Ey, ). Bottom
panels (E-H) show the absolute enzyme concentrations in the optimal solutions; the enzyme concentrations
are normalized as in Figure S2. We used the following settings: (A, E) K,=1/10 , D,=1.5, D,=1.5
» Jp =0, (B, F) K,=1/10, D=5, D,=3, Jp =0, (C G) K,=1/20, D,=10, D,=10,
Jp =0, (D, H) K,=1/25, D,=10, D,=10, Jpo=1.

Supplementary Figure S5. Solutions obtained from the extended model with different numbers of
permeable metabolites. Metabolites which are allowed to efficiently cross the cell membrane: 1, 2 or 5
(panels A, B and C, respectively). All other settings are the same as in Main Figure 4. When more than one
metabolite (other than the “product” metabolite) are allowed to be exchanged across the different bacterial
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cells, the pathways are not neatly divided across the two cells, as in panel A; instead, the optimal enzyme
levels change gradually along the pathway (panels B and C).

Supplementary Figure S6. Multiple sequences alignment (MSA) of the trpE gene in twelve different
strains of B. aphidicola, together with the corresponding homologs in E. coli K12 and S. marcescens. All
the sequences are about the same size (~515 residues) and the figure is focused on the region corresponding
to the allosteric binding site. The first, second an third rows, from top to bottom, correspond to the
sequences of S. marcesens, E. coli and B. aphidicola (C. cedri) respectively. Arrow at at columns 21 and 40
indicate the key residues involved in the allosteric inhibition mechanism, according to [1]—[3]. Is worth to
note, the the substitution Ser40—Thr40 present in some of the strains may not imply a big deal since both
residues have similar physicochemical properties.

Supplementary Tables

Supplementary Table S1. Results of the sensitivity analysis performed over the kinetic parameters on the
model with uncompetitive inhibition. The table include two sheets: in the first one (“ES asymmetry”) we
show the results of the sensitivity analysis respect protein asymmetry, whereas in the second sheet (“Total
proteins”) the same sensitivity analysis was repeated with respect to the sum of the protein concentrations of
both bacterial species. Results for the former case are explained in the Main Text. In the latter case, an
increase in turnover numbers or in the substrate concentration [S| reduces the minimum amount of
proteins needed to sustain the product flux; Conversely, this minimum protein level increases when the
demand fluxes or the amount of inhibition are increased.

Supplementary Table S2. Physicochemical properties and rule-based estimators to evaluate membrane
permeability of the metabolites involved in the biosynthesis of aromatic and branched chain amino acid.
The table include data from size different pathways. Columns abbreviation: molecular weight (MW);
hydrogen bond donor (HBD); hydrogen bond acceptor (HBA), Lipinsky rule of five (Le),; Lipinsky rule of
five extended (L5e); topological polar surface area (TPSA), 1Prule and 3PRule correspond to the two rule-
based classifiers. sing these physicochemical parameters, we compute the Lipinski rule of five [4] as well as
its extended version [5]. which allow us to discard compounds that violate more than one rule. Finally, we
also adopted rule-based criteria proposed by Pham-The et al. [6] to classify compound permeability in High
(H) Medium High (MH), Medium (M), Medium Low (ML) and Low (L). For instance, we used the 1PRule
which classify compound permeability using the PSA, as well the 3PRule which combines molecular weight,
PSA and LogD, for which we used AlogP as an estimator.
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